On SSQM and the $\mathrm{U}(\mathrm{N})$ non-linear Schrodinger equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 221807
(http://iopscience.iop.org/0305-4470/22/11/021)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 06:43

Please note that terms and conditions apply.

On SSQM and the $\mathbf{U}(\mathbf{N})$ non-linear Schrödinger equation

J Hruby ${ }^{\dagger}$
Joint Institute for Nuclear Research, Dubna, USSR

Received 27 January 1988, in final form 12 January 1989

Abstract

The method for obtaining the superpartner potential in supersymmetric quantum mechanics (SSQM) is discussed in connection with non-linear equations and reflectionless potentials. The correspondence between a new class of soliton solutions to the $U(N)$ non-linear Schrödinger equation, obtained via application of SSQM, and previously known soliton solutions is also discussed.

1. Introduction

The study of the particle-like behaviour of non-linear fields, originally developed by Einstein to systematically derive the equations of motion for a particle in an external field, took a new turn with the discovery of soliton solutions (Dodd et al 1982). Soliton-type properties have since been found in a great variety of non-linear physical systems such as Korteveg-de Vries (Kdv), sine-Gordon, non-linear Schrödinger (nls), etc.

In the 1970s theoretical physics developed a new fruitful concept in supersymmetry, i.e. the concept of treating bosons and fermions equally (Bagger and Wess 1983). The interesting advantage of supersymmetry is that it provides a natural way of incorporating fermions into the soliton system; it was first done for non-linear equations via direct supersymmetrisation by Di Vecchia and Ferrara (1977) and Hruby (1977).

From this supersoliton theory, which is given by the supersoliton Lagrangian in $(1+1)$ spacetime dimensions:

$$
\begin{equation*}
L=\frac{1}{2}\left[\left(\partial_{\mu} \phi\right)^{2}-V^{2}(\phi)+\bar{\psi}\left(\mathrm{i} \partial+V^{\prime}(\phi)\right) \psi\right] \tag{1.1}
\end{equation*}
$$

where ϕ is a Bose field and ψ is a Fermi field, we can obtain SSQM by restricting to $(0+1)$ spacetime dimension (the prime denotes differentiation with respect to the argument).

If we substitute into (1.1) the following restriction:

$\phi \rightarrow x(t)$	$\partial_{\mu} \rightarrow \partial_{1}$
$\bar{\psi} \rightarrow \psi^{\mathrm{T}} \sigma_{2}$	$\mathrm{i} \nexists \rightarrow \mathrm{i} \partial_{t} \sigma_{2}$

where

$$
\psi=\binom{\psi_{1}}{\psi_{2}}
$$

[^0]with components being interpreted as anticommuting c-numbers, σ_{k} denote the Pauli matrices, then $L \rightarrow L_{\text {SSQM }}$ and
\[

$$
\begin{equation*}
L_{\mathrm{SSQM}}=\frac{1}{2}\left[\left(\partial_{t} x\right)^{2}-V^{2}(x)+\psi^{\mathrm{T}}\left(\mathrm{i} \partial_{t}+\sigma_{2} V^{\prime}(x)\right) \psi\right] . \tag{1.2}
\end{equation*}
$$

\]

The corresponding Hamiltonian has the known form

$$
\begin{equation*}
H_{\mathrm{SSQM}}=\frac{1}{2} p^{2}+\frac{1}{2} V^{2}(x)+\frac{1}{2} \mathrm{i}\left[\psi_{1}, \psi_{2}\right] V^{\prime}(x) \tag{1.3}
\end{equation*}
$$

which was proposed by Witten (1981) and also by Salamonson and Van Holten (1982).
In the theory of supersolitons the method of inverse scattering plays a crucial role. It is interesting to show the role of the methods known from the solitons and non-linear wave equations in SSQM. In the present work we want to show the role of SSQM for non-linear equations such as NLS and Kdv.

The application of SSQM to the Zakharov equations (Zakharov 1972) and the generalisation, first given in Makhankov (1974), are discussed. We also demonstrate the correspondence between a new class of soliton solutions for the $\mathrm{U}(N)$ nLs (Makhankov and Myrzakulov 1986) and the corresponding results in ssQm.

2. Supersymmetric quantum mechanics

We shall start with the Schrödinger factorisation in quantum mechanics (Kwong and Rosner 1986). Consider the one-dimensional Schrödinger equation

$$
\begin{equation*}
\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+U(x)\right) \psi(x)=E \psi(x) \tag{2.1}
\end{equation*}
$$

and its factorisation in the form

$$
\begin{equation*}
\left(\frac{\mathrm{d}}{\mathrm{~d} x}+v\right)\left(-\frac{\mathrm{d}}{\mathrm{~d} x}+v\right) \psi=E \psi \tag{2.2}
\end{equation*}
$$

If we denote

$$
\begin{equation*}
A^{ \pm}= \pm \frac{\mathrm{d}}{\mathrm{~d} x}+v \tag{2.3}
\end{equation*}
$$

we can write $A^{+} A^{-} \psi=E \psi=H_{+} \psi$, but it gives

$$
A^{+} A^{-}=H_{+}=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+v^{2}+v_{x}=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+V_{+}
$$

Let us choose the ground state ψ_{0}^{+}to satisfy $H_{+} \psi_{0}^{+}=A^{+} A^{-} \psi_{0}^{+}=0$, implying

$$
\begin{equation*}
A^{-} \psi_{0}^{+}=0 \tag{2.4}
\end{equation*}
$$

This is a first-order differential equation

$$
\left(-\frac{\mathrm{d}}{\mathrm{~d} x}+v(x)\right) \psi_{0}^{+}=0
$$

leading to

$$
\begin{equation*}
v=\psi_{0_{x}}^{+} / \psi_{0}^{+} . \tag{2.5}
\end{equation*}
$$

If we consider the factorisation in the form

$$
\left(-\frac{\mathrm{d}}{\mathrm{~d} x}+v\right)\left(\frac{\mathrm{d}}{\mathrm{~d} x}+v\right) \psi=E \psi
$$

we get

$$
\begin{equation*}
A^{-} A^{+}=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+v^{2}-v_{x}=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+V_{-}=H_{-} \tag{2.6}
\end{equation*}
$$

Now suppose ψ^{+}to be any eigenfunction of H_{+}

$$
\begin{equation*}
H_{+} \psi^{+}=E_{+} \psi^{+} \tag{2.7}
\end{equation*}
$$

then

$$
A^{-} H_{+} \psi^{+}=E_{+}\left(A^{-} \psi^{+}\right)=A^{-} A^{+} A^{-} \psi^{+}
$$

Either $A^{-} \psi^{+}=0$ (so that $E_{+}=0$ and ψ_{+}is the ground state) or $H_{-}\left(A^{-} \psi^{+}\right)=E_{+}\left(A^{-} \psi^{+}\right)$.
Thus, every eigenstate of H_{+}, except for the ground state, gives rise (via A^{-}) to an eigenstate of H_{-}with the same eigenvalue. The ground state of H_{+}with the zero energy does not correspond to any eigenstate of H_{-}. This means that the Hamiltonian H_{+}has the same spectrum as H_{-}with the addition of an extra ground state.

If we denote by ψ_{0}^{-}the solution of the zero-energy Schrödinger equation with H_{-}:

$$
\begin{equation*}
\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+V_{-}\right) \psi_{0}^{-}=-\psi_{0 x x}^{-}+\left(v^{2}-v_{x}\right) \psi_{0}^{-}=0 \tag{2.8}
\end{equation*}
$$

we get

$$
\begin{equation*}
v=-\psi_{0 x}^{-} / \psi_{0}^{-} \tag{2.9}
\end{equation*}
$$

and by comparing with (2.5), we have

$$
\psi_{0}^{+} \sim 1 / \psi_{0}^{-} .
$$

The factorisation presented here can be written in a supersymmetric way. In the matrix formulation $H_{\text {SSQM }}$ (1.3) becomes a 2×2 matrix as well

$$
H_{\mathrm{SSQM}}=\frac{1}{2}\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+v^{2}(x)+v_{x}(x) & 0 \tag{2.11}\\
0 & -\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+v^{2}(x)-v_{x}(x)
\end{array}\right)
$$

Then

$$
H_{\mathrm{S}}=2 H_{\mathrm{sSQM}}=\left(\begin{array}{cc}
H_{+} & 0 \tag{2.12}\\
0 & H_{-}
\end{array}\right)=\left(\begin{array}{cc}
A^{+} A^{-} & 0 \\
0 & A^{-} A^{+}
\end{array}\right)=\left\{Q^{-}, Q^{+}\right\}
$$

where the 'supercharges' are defined as

$$
Q^{-}=\left(\begin{array}{cc}
0 & 0 \\
A^{-} & 0
\end{array}\right) \quad Q^{+}=\left(\begin{array}{cc}
0 & A^{+} \\
0 & 0
\end{array}\right)
$$

The other relations are

$$
\begin{equation*}
\left(Q^{-}\right)^{2}=\left(Q^{+}\right)^{2}=0 \quad\left[H_{\mathrm{s}}, Q^{-}\right]=\left[H_{\mathrm{s}}, Q^{+}\right]=0 \tag{2.13}
\end{equation*}
$$

The eigenfunctions of H_{S} are

$$
\psi_{\mathrm{s}}=\binom{\psi^{+}}{\psi^{-}}
$$

and they have the properties

$$
\begin{array}{ll}
Q^{-} \psi_{\mathrm{s}} & =\binom{0}{\psi^{-}} \\
Q^{+} \psi_{\mathrm{s}} & =\binom{\psi^{+}}{0}
\end{array}
$$

We can call the levels $\binom{山^{+}}{0}$ 'bosonic' and the levels $\binom{0}{\psi^{-}}$'fermionic' in the view of the 'fermionic' nature of the 'superalgebra' in the relations (2.12) and (2.13).

In the theory of the spectral transforms and solitons (Calogero and Degasperis 1982) it is shown that the Schrödinger factorisation (2.2) is equivalent to the Muira transformation between V_{+}and v :

$$
V_{+}=v^{2}+v_{x}
$$

coupling KdV and modified KdV (mKdV). The same is valid for V_{-}because mKdV is invariant under the transformation $v \rightarrow-v$. In this sense the Miura transformation represents the supersymmetric 'square root'.

There exists a deep connection between SSQM and the N-soliton solution of the KdV , reflectionless potentials

$$
\begin{equation*}
U_{N}(x)=-N(N+1) b^{2} \operatorname{sech}^{2} b x \quad N=1,2, \ldots \tag{2.14}
\end{equation*}
$$

(i) Let us take $N=1, b=1 / L \sqrt{2}$ in the symmetric reflectionless potential (2.14)

$$
u(x)=-\frac{1}{L^{2}} \operatorname{sech}^{2} \frac{x}{L \sqrt{2}} .
$$

Then, $u(x)$ can be regarded as a one-soliton solution of the $K d V$ equation for $t=0$, i.e. of the equation

$$
\begin{equation*}
u_{t}-6 v u_{x}+u_{x x x}=0 . \tag{2.15}
\end{equation*}
$$

The Kdv one-soliton solution for all t is

$$
u(x, t)=-\frac{1}{L^{2}} \operatorname{sech}^{2}\left(\frac{x-\left(2 / L^{2}\right) t}{L \sqrt{2}}\right)
$$

The same is valid for higher N.
(ii) Let us consider now a function $v(x, t)$ satisfying $M K d V$

$$
\begin{equation*}
v_{t}+6\left(\frac{1}{2 L^{2}}-v^{2}\right) v_{x}+v_{x x x}=0 \tag{2.16}
\end{equation*}
$$

Then, if we define

$$
\begin{equation*}
V_{-}=v^{2}-v_{x}-1 / 2 L^{2} \tag{2.17}
\end{equation*}
$$

as is usual in SSQM, it can easily be shown that V_{-}satisfies $K d v$. The same is valid for

$$
\begin{equation*}
V_{+}=v^{2}+v_{x}-1 / 2 L^{2} \tag{2.18}
\end{equation*}
$$

In this way we can see that there exists a general connection between N-soliton solutions of KdV, SSQM, the inverse scattering method and the construction of the reflectionless potentials.

We shall now be concerned with the application of these results of SSQM to the Schrödinger equation with self-consistent potentials.

3. The application of SSQM to non-integrable systems

Here we discuss the non-integrable system (Zakharov 1972)

$$
\begin{gather*}
\mathrm{i} \psi_{t}+\psi_{x x}-\eta \psi=0 \tag{3.1a}\\
\eta_{t \prime}-\eta_{x x}=\mid \psi_{x x}^{2} \tag{3.1b}
\end{gather*}
$$

and the system (Makhankov 1974)

$$
\begin{align*}
& \mathrm{i} \psi_{t}+\psi_{x x}-\eta \psi=0 \tag{3.2a}\\
& \eta_{t t}-\eta_{x x}-\alpha\left(\eta^{2}\right)_{x x}-\beta \eta_{x x x x}=|\psi|_{x x}^{2} \tag{3.2b}
\end{align*}
$$

Here $\psi(x, t)$ and $\eta(x, t)$ are respectively complex and real functions; α and β are real parameters.

These (in general) non-integrable systems have applications in interesting areas in physics (Makhanhov et al 1986).

We shall now demonstrate, using (3.1), that the basic role played by (3.1a) in finding soliton-like solutions is that of being the symmetric reflectionless potential. The same will be true for system (3.2).

Now we shall discuss the so-called quasistatic limit of the Zakharov (z) equations (3.1a) and (3.1b). Neglecting the term $\eta_{t t},(3.1 b)$ has the form

$$
\left(\eta+|\psi|^{2}\right)_{x x}=0
$$

which implies $\eta=-|\psi|^{2}$ if η and $|\psi|^{2}$ are square integrable. Substitution of this expression for η into (3.1a) yields the nLs equation

$$
\begin{equation*}
\mathrm{i} \psi_{1}+\psi_{x x}+|\psi|^{2} \psi=0 \tag{3.3}
\end{equation*}
$$

It is well known that (3.1a) and (3.1b) have a one-soliton solution:

$$
\begin{equation*}
\psi=\frac{1}{L} \operatorname{sech}\left(\frac{x-x_{0}-v t}{L \sqrt{2\left(1-v^{2}\right)}}\right) \exp \left[\frac{1}{2} \mathrm{i} v x-\mathrm{i}\left(\frac{1}{4} v^{2}-\frac{1}{2 L^{2}\left(1-v^{2}\right)}\right) t+\mathrm{i} \theta_{0}\right] \tag{3.4a}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta=-|\psi|^{2} /\left(1-v^{2}\right) \tag{3.4b}
\end{equation*}
$$

where $L>0, v, x_{0}$ and θ_{0} are constants.
It is clear that solution (3.4a) tends to the particular one-soliton solution

$$
\begin{equation*}
\psi(x, t)=\exp \left(\frac{\mathrm{i} t}{2 L^{2}}\right) \frac{1}{L} \operatorname{sech} \frac{x}{L \sqrt{2}} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta(x)=-|\psi|^{2} \tag{3.6}
\end{equation*}
$$

for $v=0, x_{0}=0$ and $\theta_{0}=0$.

If we put solutions (3.5) and (3.6) into (3.1a), we obtain

$$
\begin{equation*}
\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}-\frac{1}{L^{2} \cosh ^{2}(x / L \sqrt{2})}\right) \psi_{1}\left(E_{1}\right)=E_{1} \psi_{1}\left(E_{1}\right) \tag{3.7}
\end{equation*}
$$

i.e. the eigenvalue equation $H_{1} \psi_{1}=E_{1} \psi_{1}$ corresponding to (3.1a). In (3.7) we denote the eigenvalue by $E_{1}=-\gamma_{1}^{2}=-1 / 2 L^{2}$ and it corresponds to the eigenfunction

$$
\psi_{1}=\frac{1}{L} \operatorname{sech} \frac{x}{L \sqrt{2}} .
$$

Now we shall consider $\eta(x)$

$$
\eta(x)=-\left|\psi_{1}\right|^{2}=-\frac{1}{L^{2}} \operatorname{sech}^{2} \frac{x}{L \sqrt{2}}
$$

as the symmetric reflectionless potential in the eigenvalue problem (3.7), and using the results of SSQM we shall construct other symmetric reflectionless potentials as 'superpartners'. We can see that $H_{1}=-\mathrm{d}^{2} / \mathrm{d} x^{2}+\eta_{1}$ is the superpartner to $H_{0}=$ $-\mathrm{d}^{2} / \mathrm{d} x^{2}+\eta_{0}$, where the potential η_{1} supports a simple bound state at energy $E=$ $-1 / 2 L^{2}$ while η_{0} supports no bound states.

Choosing $\eta_{0}=0, H_{0}$ is then the free-particle Hamiltonian and the reflection coefficient of η_{0} is $R_{0}(k)=0$ for the positive energies $E=k^{2}$. The reflection coefficient of H_{1} is given by

$$
R_{1}(k)=\frac{\gamma_{1}-\mathrm{i} k}{\gamma_{1}+\mathrm{i} k} R_{0}(k)
$$

which is zero for $R_{0}(k)=0$. But it is the case of the reflectionless potential in (2.14) for $N=1$ and $b=(1 / L \sqrt{2})$.

From ssQm let us suppose

$$
\begin{equation*}
V_{-}=v^{2}-v_{x}=1 / 2 L^{2} . \tag{3.8}
\end{equation*}
$$

Equation (3.8) is a very simple Riccati equation whose solution is given by substituting

$$
\begin{equation*}
v=-\psi_{0 x} / \psi_{0} \tag{3.9}
\end{equation*}
$$

and we have

$$
\begin{equation*}
\psi_{0 x x} / \psi_{0}=1 / 2 L^{2} \tag{3.10}
\end{equation*}
$$

Here, ψ_{0} is the solution of the zero-energy Schrödinger equation with

$$
\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+v^{2}-v_{x}\right) \psi_{0}=0
$$

The form of the solution, ψ_{0}, of (3.10) is

$$
\begin{equation*}
\psi_{0}=\operatorname{constant} \times \cosh \frac{x}{\sqrt{2} L} \tag{3.11}
\end{equation*}
$$

and from (3.9) it follows that

$$
\begin{equation*}
v=-\frac{1}{\sqrt{2} L} \tanh \frac{x}{\sqrt{2} L} . \tag{3.12}
\end{equation*}
$$

The superpartner to V_{-}has the form

$$
\begin{equation*}
V_{+}=v^{2}+v_{x}=\frac{1}{2 L^{2}}-\frac{1}{L^{2}} \operatorname{sech}^{2} \frac{x}{L \sqrt{2}} . \tag{3.13}
\end{equation*}
$$

Now, if we denote

$$
\begin{aligned}
& \eta_{0}(x)=v^{2}-v_{x}-1 / 2 L^{2}=0 \\
& \eta_{1}(x)=v^{2}+v_{x}-\frac{1}{2 L^{2}}=-\frac{1}{L^{2}} \operatorname{sech}^{2} \frac{x}{L \sqrt{2}}
\end{aligned}
$$

we can see that H_{1} is the superpartner to H_{0}.
Using results from SSQM we shall now demonstrate how to construct a symmetric reflectionless $\eta_{j}(x), j=1,2, \ldots, N$. For arbitrary j we may now assume $\eta_{j-1}(x)$ to be known and define v_{j} by

$$
\eta_{j+1}=v_{j}^{2}-v_{j x}-E_{j} .
$$

Then, the superpartner has the form

$$
\eta_{j}=v_{j}^{2}+v_{j x}-E_{j} .
$$

The crucial point for the construction is that the supersymmetric reflectionless partner can be expressed via the eigenfunctions of the corresponding Hamiltonian. This can be seen from the equation $(j=1)$
$H_{+}=A^{+} A^{-}=H_{-}+\left[A^{+}, A^{-}\right]=H_{-}+2 \frac{\mathrm{~d}}{\mathrm{~d} x} v=H_{-}-2 \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} \ln \psi_{0}$.
Hence

$$
H_{+}=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+E_{1}+\eta_{0}-2 \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} \ln \psi_{0}\left(E_{1}\right)
$$

and

$$
\begin{equation*}
\eta_{1}=-2 \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} \ln \psi_{0}\left(E_{1}\right) \tag{3.15}
\end{equation*}
$$

for $\eta_{0}=0$.
We can apply this procedure to the z system (3.1). For higher $N=2,3, \ldots$ it is known (Calogero and Degasperis 1982, Sukumar 1986) that the symmetric reflectionless $\eta_{N}(x)$ may be expressed in terms of normalised bound-state eigenfunctions in the form

$$
\begin{equation*}
\eta_{N}(x)=-4 \sum_{i=1}^{N}\left[\gamma_{i} \psi_{N}^{2}\left(E_{i}\right)\right] . \tag{3.16}
\end{equation*}
$$

Using the results of SSQM a vector version of the NLS (vNLS) was presented (Hruby 1988) in the form

$$
\begin{align*}
& \mathrm{i} \partial_{1} \psi_{N}+\psi_{N x x}-\eta_{N} \psi_{N}=0 \tag{3.17a}\\
& \left(\eta_{N}+4 \sum_{i=1}^{N}\left(\gamma_{1}\left|\psi_{N}\left(E_{1}\right)\right|^{2}\right)\right)_{x x}=0 \tag{3.17b}
\end{align*}
$$

where $\psi_{N}\left(E_{i}\right)$ are bound states given by

$$
\begin{equation*}
\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\eta_{N}(x)\right) \psi_{N}\left(E_{i}\right)=E_{i} \psi_{N}\left(E_{i}\right) \tag{3.18}
\end{equation*}
$$

with η_{N} being 'symmetric' reflectionless potentials.
For the physical application, the interesting case is when

$$
\begin{equation*}
\eta_{N}(x)=-N(N+1) \frac{1}{2 L^{2}} \operatorname{sech}^{2} \frac{x}{L \sqrt{2}}=-\frac{N(N+1)}{2} \eta_{1}(x) . \tag{3.19}
\end{equation*}
$$

Mathematically, (3.19) corresponds to the so-called Lame-Ains N-zones elliptical potential (Novikov 1980). In this case the vnls system (3.17) has the form

$$
\begin{align*}
& \mathrm{i} \partial_{t} \psi_{N}+\psi_{N x x}+\frac{N(N+1)}{2}\left|\psi_{1}\right|^{2} \psi_{N}=0 \tag{3.20a}\\
& \left(\eta_{N}(x)+\frac{N(N+1)}{2}\left|\psi_{1}\right|^{2}\right)_{x x}=0 \tag{3.20b}
\end{align*}
$$

In these equations there exist the envelope solitary wave solutions

$$
\psi_{N}=\exp \left(\mathrm{i} t / s L^{2}\right) \frac{1}{L} \operatorname{sech} \frac{\sqrt{N(N+1)}}{2 L} x
$$

for arbitrary $N=1,2, \ldots$.
To end this section we mention that these results are valid for all classes of so-called 'bona fide' potentials (Calogero and Degasperis 1982). An arbitrary couple of these potentials are given in the form

$$
u^{1}(x)=\frac{1}{4}\left(\nu^{2}-2 \nu_{x}\right) \quad u^{2}(x)=\frac{1}{4}\left(\nu^{2}+2 \nu_{x}\right)
$$

where $\nu(x)$ is an arbitrary regular function; both $\nu(x)$ and its derivatives go to zero at infinity. Reflection (R) and transmission (T) coefficients corresponding to the potentials $u^{1,2}(x)$ are connected via the following relations:

$$
\begin{equation*}
R^{1}(k)=-R^{2}(k) \quad T^{1}(k)=T^{2}(k) \tag{3.21}
\end{equation*}
$$

It is interesting that supersymmetry appears as relation (3.19) between R and T coefficients of the two superpartner potentials $u^{1,2}$ (for $\nu=2 v, u^{1,2} \equiv V_{+,-}$).

Reflectionless potentials which are discussed here are a special subclass of the 'bona fide' potentials and it is well known that these potentials are the multisoliton solutions of the Kdv equation (Calogero and Degasperis 1982).

In the application to the z equations the time evolution of the reflectionless potentials η_{N} is different and is given by

$$
\eta_{N t t}-\eta_{N x x}=4\left(\sum_{i=1}^{N} \gamma_{i}\left|\psi_{N}\left(E_{i}\right)\right|^{2}\right)_{x x}
$$

The numerical verification of the evolution of the soliton solutions given by (3.17a) and ($3.17 b$) was given in Astrelin (1988). It is known that this admits another presentation first made by Makhankov and Myrzakulov (1986) by means of the factorisation method. The $U(N)$ vector non-linear Schrödinger equation factorisation and the relation with the SSQM results (Sukumar 1986) was published by Hruby and Makhanov (1987).

4. The $\mathbf{U}(\mathbf{N})$ vector non-linear Schrödinger equation: factorisation and the relation with the SSQM results

The $\mathrm{U}(N)$ vector nLs has the form

$$
\begin{equation*}
\mathrm{i} \phi_{N_{t}}+\phi_{N x x}+\left(\bar{\phi}_{N} \phi_{N}\right) \phi_{N}=0 \tag{4.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi_{N}(x, t)=\left(\phi_{N, 1}, \ldots, \phi_{N, m}\right)^{\mathrm{T}} \quad \bar{\phi}_{N} \phi_{N}=\sum_{j=1}^{m}\left|\phi_{N, j}\right|^{2} \quad m \geqslant N . \tag{4.2}
\end{equation*}
$$

A new particular class of the soliton solutions of (4.1) has recently been obtained (Makhankov and Myrzakulov 1988) via the so-called factorisation method. We show that these solutions are equivalent to the reflectionless symmetric potentials of the one-dimensional Schrödinger equation and in the case when the potentials $\eta_{N}(x)$ have the form (2.14) it corresponds exactly to the results given in $\S \S 2$ and 3 via ssqm. We can show this in the following way.

Write the solutions of (4.1) in the form

$$
\begin{equation*}
\phi_{N}(x, t)=C \exp (\mathrm{i} W) \phi_{N}(y) \tag{4.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& \phi_{N}(y)=\left(\phi_{N, 1}, \ldots, \phi_{N, m}\right)^{\mathrm{T}} \quad C=\operatorname{diag}\left(C_{1}, \ldots, C_{m}\right) \\
& W=\operatorname{diag}\left(\theta_{1}, \ldots, \theta_{m}\right) \quad \theta_{j}=\frac{1}{2} v\left(x-\frac{1}{2} v t\right)-\Lambda_{j} t \quad y=x-v t
\end{aligned}
$$

and put (4.3) into (4.1) to get

$$
\begin{align*}
& \phi_{N, j}^{\prime \prime}-\eta_{N} \phi_{N, j}=-\Lambda_{j} \phi_{N, j} \tag{4.4}\\
& \eta_{N}=-\sum_{j=1}^{m}\left|C_{j}\right|^{2} \phi_{N, j}^{2}
\end{align*}
$$

Suppose the potential η_{N} to be in the form (2.14); then (4.4) becomes

$$
\begin{equation*}
\phi_{N, j}^{\prime \prime}+N(N+1) b^{2} \operatorname{sech} b y \phi_{N, j}=-\Lambda_{j} \phi_{N, j} \tag{4.5}
\end{equation*}
$$

It is known that (4.5) for arbitrary N has N eigenvalues $\Lambda_{j}=-j^{2} b^{2}, j=1,2, \ldots, N$. The corresponding eigenfunctions may be found by using the factorisation which is equivalent to the SSQM 'square root', mentioned above.

We can define $A_{l}^{ \pm}$in the same way as in (2.3), namely

$$
A_{l}^{ \pm}= \pm \frac{\mathrm{d}}{\mathrm{~d} y}+l b \tanh b y= \pm \frac{\mathrm{d}}{\mathrm{~d} y}+v_{l}(y)
$$

where v_{l} has the form (3.12) for $l=1$ and $b=1 / L \sqrt{2}$.
Then in the same way as in SSQM we define

$$
\begin{align*}
& A_{l+1}^{+} \phi_{l, j}=\phi_{l+1, j} \tag{4.6}\\
& A_{l+1}^{-} \phi_{l, j}=\phi_{l-1, j} \tag{4.7}
\end{align*}
$$

From (4.6) and (4.7), using

$$
\begin{equation*}
\phi_{l, j} \equiv 0 \tag{4.8}
\end{equation*}
$$

for $l>N$, we obtain all the solutions to (4.5). Some of them follow directly; e.g. for $N=j=l$ we get

$$
A_{N}^{+} \phi_{N, N}=0
$$

and from this

$$
\begin{equation*}
\phi_{N, N} \sim \operatorname{sech}^{N} b y \tag{4.9}
\end{equation*}
$$

Generally, we have the recurrent formula

$$
\begin{equation*}
\phi_{l, j}=A_{l}^{+} A_{l-1}^{+} \ldots A_{j+1}^{+} \phi_{j, j} \tag{4.10}
\end{equation*}
$$

Thus we obtain for $N=1=m$, i.e. $l=j=1$, from (4.9)

$$
\begin{equation*}
\phi_{1,1} \sim \operatorname{sech} b y \tag{4.11}
\end{equation*}
$$

which corresponds to the SSQM relation (2.10) with ψ_{0}^{-}as in (3.11). In fact, the potential $V_{+}=v_{1}^{2}+v_{1 x}$ has a zero-energy bound state whose eigenfunction is

$$
\psi_{0}^{+} \sim \operatorname{sech} \frac{x}{L \sqrt{2}}
$$

For $N=2$ we have the two solutions corresponding to $\Lambda_{1}=-b^{2}$ and $\Lambda_{2}=-4 b^{2}$. Then, from (4.9) it follows that

$$
\begin{equation*}
\phi_{2,2} \sim \operatorname{sech}^{2} b y \tag{4.12a}
\end{equation*}
$$

and from (4.10) and (4.11) we get

$$
\begin{equation*}
\phi_{2,1}=A_{2}^{+} \phi_{1,1} \sim \tanh b y \operatorname{sech} b y . \tag{4.12b}
\end{equation*}
$$

So, we obtain from the relations (4.3) and (4.11) the known one-soliton solution of the $\mathrm{U}(1)$ NLs equation

$$
\begin{equation*}
\phi_{1}(x, t)=C \exp \left(\mathrm{i} \theta_{1}\right) \operatorname{sech} b y \tag{4.13}
\end{equation*}
$$

where $|C|^{2}=2 b^{2}$.
For $N=m=2$ it follows that the soliton solution to the $\mathrm{U}(2)$ vnLs is

$$
\begin{equation*}
\phi_{2}(x, 1)=\binom{c_{1} \exp \left(\mathrm{i} \theta_{1}\right) \sinh b y}{C_{2} \exp \left(\mathrm{i} \theta_{2}\right)} \operatorname{sech}^{2} b y \tag{4.14}
\end{equation*}
$$

where $\left|C_{1}\right|^{2}=\left|C_{2}\right|^{2}=6 b^{2}$. Analogous results hold for $N=m=3$ and so on.
The general expression for the symmetric reflectionless potentials $\eta_{N}(x, t)$ in (4.4) can be given following Sukumar (1986)

$$
\begin{equation*}
\eta_{N}=-2 \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} \ln \operatorname{det} D_{N} \tag{4.15}
\end{equation*}
$$

where the elements of the matrix D_{N} are given by

$$
\begin{equation*}
\left[D_{N}\right]_{j_{k}}=\frac{1}{2}\left(\gamma_{k}\right)^{J-1}\left[\exp \left(\gamma_{k} x\right)+(-1)^{J+k} \exp \left(-\gamma_{k} x\right)\right] \tag{4.16}
\end{equation*}
$$

and the normalised eigenfunctions for the eigenenergy $E_{j}=-\gamma_{j}^{2} \equiv \Lambda_{j}$ may be written in the form

$$
\begin{equation*}
\tilde{\phi}_{N}\left(E_{j}\right)=\left(\frac{\gamma_{j}}{2} \sum_{k \neq j}^{N}\left|\gamma_{k}^{2}-\gamma_{j}^{2}\right|\right)^{1 / 2}\left[D_{N}^{-1}\right]_{j N} \tag{4.17}
\end{equation*}
$$

where $j=1,2, \ldots, N$.

For $N=2$ from the relations (4.15)-(4.17) it follows that

$$
\begin{gather*}
D_{2}=\left(\begin{array}{cc}
\cosh \gamma_{1} x & \sinh \gamma_{2} x \\
\gamma_{1} \sinh \gamma_{1}^{\prime} x & \gamma_{2} \cosh \gamma_{2} x
\end{array}\right) \tag{4.18}\\
\eta_{2}(x)=-2\left(\gamma_{2}^{2}-\gamma_{1}^{2}\right) \frac{\gamma_{2}^{2} \cosh \gamma_{1} x+\gamma_{1}^{2} \sinh \gamma_{2} x}{\left(\gamma_{2} \cos \gamma_{2} x \cosh \gamma_{1} x-\gamma_{1} \sinh \gamma_{2} x \sinh \gamma_{1} x\right)^{2}} \tag{4.19}\\
\tilde{\phi}_{2}\left(E_{1}\right)=\left(\frac{\gamma_{1}}{2}\left(\gamma_{2}^{2}-\gamma_{1}^{2}\right)\right)^{1 / 2} \frac{\cosh \gamma_{2} x}{\operatorname{det} D_{2}} \\
=(x-\nu) \frac{\cosh \nu y-\cosh x y-\sinh \nu y-\sinh x y}{x \cosh \nu y+\nu \cosh x y} \tag{4.20a}\\
\tilde{\phi}_{2}\left(E_{2}\right)=\left(\frac{\gamma_{2}}{2}\left(\gamma_{2}^{2}-\gamma_{1}^{2}\right)\right)^{1 / 2} \frac{\cosh \gamma_{1} x}{\operatorname{det} D_{2}} \\
=(x+\nu) \frac{\sinh \nu y+\sinh x y-\cosh \nu y-\cosh x y}{x \cosh \nu y+\nu \cosh x y} \tag{4.20b}
\end{gather*}
$$

where $x=-\left(\gamma_{1}-\gamma_{2}\right)$ and $\nu=\gamma_{1}+\gamma_{2}$.
Equations (4.19) and (4.20) coincide with (22) and (25), (26) of Makhankov and Myrzakulov (1986).

We can also see that

$$
\begin{equation*}
\eta_{2}(x)=-4\left(\gamma_{2} \tilde{\phi}_{2}^{2}\left(E_{2}\right)+\gamma_{1} \tilde{\phi}_{2}^{2}\left(E_{1}\right)\right] \tag{4.21}
\end{equation*}
$$

and in particular, if $\gamma_{2}^{2}=4 \gamma_{1}^{2}$ the resulting potential is

$$
\begin{equation*}
\eta_{2}(x)=-6 \gamma_{1}^{2} \operatorname{sech}^{2} \gamma_{1} x \tag{4.22}
\end{equation*}
$$

i.e. $\eta_{2}(x)$ exactly corresponds to the potential (2.14) for $N=2$.

There exist two bound states at $\Lambda_{1}=-\gamma_{1}^{2}=-b^{2}, \Lambda_{2}=-4 \gamma_{1}^{2}=-4 b^{2}$ and ($4.20 a, b$) correspond to (4.14).

These new soliton solutions of the vnls are equivalent to the known solutions in sSQM (Sukumar 1986).

5. Conclusions

In this paper, after introduction to SSQM, we have shown the general connection between N-soliton solutions of Kdv, SSQM, the inverse scattering method and the construction of the reflectionless potentials.

The new features of the paper seem to be the following observations.
(i) The Miura transformation in some sense represents the supersymmetric 'square root'.
(ii) The symmetry between reflection and transmition coefficients for 'bona fide' potentials in quantum mechanics is connected with supersymmetry.
(iii) The application of SSQM to the vNLs equation provides the possibility of investigating the soliton sector of certain non-integrable systems such as the z system. The symmetric reflectionless potentials are obtained here as linear combinations of the eigenvalue solutions.

It should be noted that symmetric reflectionless SSQM potentials and those obtained via the familiar factorisation method naturally coincide up to reparametrisation.

The new result (iii) has possible applications to plasma physics and non-linear optics.

References

Astrelin V I, Breizman B V, Sedlacek Z and Jungwirth K 1988 Fiz. Plazmy 14706
Bagger J and Wess J 1983 Supersymmetry and Supergravity (Princeton, NJ: Princeton University Press)
Calogero F and Degasperis A 1982 Spectral Transforms and Solitons (Amsterdam: North-Holland)
Di Vecchia P and Ferrara S 1977 Nucl. Phys. B 13093
Dodd R K, Eilbeck J C, Gibbon J D and Morris H C 1982 Solitons and Nonlinear Wave Equations (New York: Academic)
Hruby J 1977 Nucl. Phys. B 131275

- 1987 Suppl. Rend. Circ. Mat. Palermo II 1665

1988 Acta Phys. Slovaca 38193
Hruby J and Makhankov V G 1987 Preprint JINR, Dubna E2-870-890
Kwang W and Rosner J L 1986 Prog. Theor. Phys. Suppl. 86366
Makhankov V G 1974 Phys. Lett. 50A 42
Makhankov V G and Myrzakulov R 1986 Preprint JINR, Dubna P5-86-356
Makhankov V G, Myrzakulov R and Katyschev J V 1986 Preprint JINR, Dubna P17-86-94
Novikov S P 1980 Theory of Solitons (Moscow: Nauka) p 185
Salamonson P and Van Holten J W 1982 Nucl. Phys. B 196509
Sukumar C V 1986 J. Phys. A: Math. Gen. 192297
Witten E 1981 Nucl. Phys. B 188513
Zakharov V E 1972 Sov. Phys.-JETP 35908

[^0]: † Permanent address: Institute of Plasma Physics, CSAV, Pod Vodárenskou věží 4, 18069 Prague 8, CSSR.

