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On SSQM and the U(N) non-linear Schrodinger equation 
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Joint Institute for Nuclear Research, Dubna, USSR 

Received 27 January 1988, in final form 12 January 1989 

Abstract. The method for obtaining the superpartner potential in supersymmetric quantum 
mechanics ( SSQM) is discussed in connection with non-linear equations and reflectionless 
potentials. The correspondence between a new class of soliton solutions to the U( N )  
non-linear Schrodinger equation, obtained via application of SSQM, and previously known 
soliton solutions is also discussed. 

1. Introduction 

The study of the particle-like behaviour of non-linear fields, originally developed by 
Einstein to systematically derive the equations of motion for a particle in an external 
field, took a new turn with the discovery of soliton solutions (Dodd et a1 1982). 
Soliton-type properties have since been found in a great variety of non-linear physical 
systems such as Korteveg-de Vries (Kdv) ,  sine-Gordon, non-linear Schrodinger ( NLS), 

etc. 
In the 1970s theoretical physics developed a new fruitful concept in supersymmetry, 

i.e. the concept of treating bosons and fermions equally (Bagger and Wess 1983). The 
interesting advantage of supersymmetry is that it provides a natural way of incorporating 
fermions into the soliton system; it was first done for non-linear equations via direct 
supersymmetrisation by Di Vecchia and Ferrara (1977) and Hruby (1977). 

From this supersoliton theory, which is given by the supersoliton Lagrangian in 
(1 + 1) spacetime dimensions: 

L=”+$ V 2 ( 4 4 +  $(id+ V’(4))*1 (1.1) 

where 4 is a Bose field and $ is a Fermi field, we can obtain SSQM by restricting to 
(0+ 1) spacetime dimension (the prime denotes differentiation with respect to the 
argument). 

If we substitute into (1.1) the following restriction: 

4 + x ( t )  a,+a, 
4- id + i a p 2  

where 
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with components being interpreted as anticommuting c-numbers, uk denote the Pauli 
matrices, then L-, LssQM and 

The corresponding Hamiltonian has the known form 

which was proposed by Witten (1981) and also by Salamonson and Van Holten (1982). 
In the theory of supersolitons the method of inverse scattering plays a crucial role. 

It is interesting to show the role of the methods known from the solitons and non-linear 
wave equations in SSQM. In the present work we want to show the role of SSQM for 
non-linear equations such as NLS and Kdv.  

The application of SSQM to the Zakharov equations (Zakharov 1972) and the 
generalisation, first given in Makhankov (1974), are discussed. We also demonstrate 
the correspondence between a new class of soliton solutions for the U ( N )  NLS 

(Makhankov and Myrzakulov 1986) and the corresponding results in SSQM. 

2. Supersymmetric quantum mechanics 

We shall start with the Schrodinger factorisation in quantum mechanics (Kwong and 
Rosner 1986). Consider the one-dimensional Schrodinger equation 

and its factorisation in the form 

If we denote 

d 
dx 

we can write A+A-$ = E+ = H+4, but it gives 

A*=*-+U 

A+A- = H+ = --+ d2 u 2 +  U, = -T+ d2 V+. 
dx2 dx 

Let us choose the ground state +: to satisfy H+(cl; = A'A-4; = 0, implying 

A-$: = 0. 

This is a first-order differential equation 

--+u(x) +;=o 
G X  ) 

leading to 

U = *&/*o'. 
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If we consider the factorisation in the form 

(-$+ U)( ;+ U) * = E* 

we get 

Now suppose q5' to be any eigenfunction of H ,  

H++' = E+$+ ( 2 . 7 )  

then 

A-H+++ = E+(A-++)  = A-A+A-++.  

Either A-++ = 0 (so that E+ = 0 and I,!I+ is the ground state) or H_(A-++)  = E + ( A - + + ) .  
Thus, every eigenstate of H + ,  except for the ground state, gives rise (via A - )  to an 

eigenstate of H -  with the same eigenvalue. The ground state of H+ with the zero 
energy does not correspond to any eigenstate of H-. This means that the Hamiltonian 
H+ has the same spectrum as H -  with the addition of an extra ground state. 

If we denote by $0 the solution of the zero-energy Schrodinger equation with H - :  

( - -$ + v-) *; = - *& + ( U2 - U,) *; = 0 

we get 

v = -*O,/*o (2 .9 )  

and by comparing with (2.5), we have 

*0'-1/*0. 

The factorisation presented here can be written in a supersymmetric way. In the 
matrix formulation HssQM ( 1 . 3 )  becomes a 2 x 2 matrix as well 

Then 

where the 'supercharges' are defined as 

0 0  Q + = ( O  " + ) ,  
Q - = ( A -  0 )  0 0  

The other relations are 

(Q-f2 = ( Q+)2 = 0 [ H s ,  Q - I = [ H s ,  Q+1=0. (2.13) 
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The eigenfunctions of H s  are 

and they have the properties 

Q - h  = (;-) unless A-$* = 0 

We can call the levels (’’+) ‘bosonic’ and the levels ($) ‘fermionic’ in the view of the 
‘fermionic’ nature of the ‘superalgebra’ in the relations (2.12) and (2.13). 

In the theory of the spectral transforms and solitons (Calogero and Degasperis 
1982) it is shown that the Schrodinger factorisation (2.2) is equivalent to the Muira 
transformation between V+ and U :  

v+ = u 2 +  U, 

coupling K d v  and modified K d v  ( M K d v ) .  The same is valid for V- because M K d v  is 
invariant under the transformation v + -U. In this sense the Miura transformation 
represents the supersymmetric ‘square root’. 

There exists a deep connection between SSQM and the N-soliton solution of the 
K d v ,  reflectionless potentials 

U , ( x )  = -N(N+ l ) b 2  sech’ bx N =  1 , 2 , .  . . . (2.14) 

(i)  Let us take N = 1 ,  b = l / L a  in the symmetric reflectionless potential (2.14) 

1 2 x  
L L a ’  

u ( x )  = -7 sech - 

Then, u ( x )  can be regarded as a one-soliton solution of the K d v  equation for t = 0, 
i.e. of the equation 

U, - ~ u u ,  + U,,, = 0. (2.15) 

The K d v  one-soliton solution for all t is 

1 
L 

u ( x ,  t )  = -7 sech’ 

The same is valid for higher N. 
(ii) Let us consider now a function u(x, t )  satisfying M K d v  

(2.16) 

Then, if we define 

v- = v2-  U, - 1/2L2 (2.17) 

as is usual in SSQM, it can easily be shown that V- satisfies K d v .  The same is valid for 

(2.18) v+ = v 2 +  U, - 1/2L2. 
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In this way we can see that there exists a general connection between N-soliton 
solutions of Kdv, SSQM, the inverse scattering method and the construction of the 
reflectionless potentials. 

We shall now be concerned with the application of these results of SSQM to the 
Schrodinger equation with self-consistent potentials. 

3. The application of SSQM to non-integrable systems 

Here we discuss the non-integrable system (Zakharov 1972) 

i$t + $xx - 77$ = 0 

7711 - 77xx = I$lL 

i 4, + $xx - 774 = 0 

Trr - ~ x x  - a ( 77 )xx - P ~ x x x x  = I $ 1  f;x 

and the system (Makhankov 1974) 

2 

( 3 . 1 ~ )  

(3.lb) 

( 3 . 2 ~ )  

(3.26) 

Here $(x, t )  and q ( x ,  t )  are respectively complex and real functions; a and P are real 
parameters. 

These (in general) non-integrable systems have applications in interesting areas in 
physics (Makhanhov et a1 1986). 

We shall now demonstrate, using (3.1), that the basic role played by ( 3 . 1 ~ )  in 
finding soliton-like solutions is that of being the symmetric reflectionless potential. 
The same will be true for system (3.2). 

Now we shall discuss the so-called quasistatic limit of the Zakharov (z) equations 
( 3 . 1 ~ )  and (3.lb). Neglecting the term v t l ,  (3.lb) has the form 

( 7 7 +  1412)xx = 0 

which implies 77 = - l $ I 2  if 77 and 1 $ 1 2  are square integrable. Substitution of this 
expression for 7 into ( 3 . 1 ~ )  yields the NLS equation 

(3.3) i$t + cLxx + I$IV = 0. 

It is well known that ( 3 . 1 ~ )  and (3.lb) have a one-soliton solution: 

$ = l s e c h (  exp [ fiux-i ( i o z -  1 ) t + i oO] 
L LJ2(  1 - u 2 )  2L2( 1 - u 2 )  

(3.4a) 

(3.46) 

where L > 0, U, xo and Bo are constants. 
It is clear that solution ( 3 . 4 ~ )  tends to the particular one-soliton solution 

1 X 
$(x, t )  = exp (s) L sech -pj (3.5) 

and 

77(x) = -1412 
for U = 0, xo = 0 and Bo = 0. 

(3.6) 
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If we put solutions (3.5) and (3.6) into (3.lu),  we obtain 

i.e. the eigenvalue equation HI+, = 
the eigenvalue by E ,  = - y: = -1/2L2 and it corresponds to the eigenfunction 

corresponding to ( 3 . 1 ~ ) .  In (3.7) we denote 

1 X +, = sech z. 
Now we shall consider ~ ( x )  

as the symmetric reflectionless potential in the eigenvalue problem (3.7), and using 
the results of SSQM we shall construct other symmetric reflectionless potentials as 
‘superpartners’. We can see that H I  = -d2/dx2+ 7, is the superpartner to Ho = 
-d2/dx2+ 70, where the potential 7, supports a simple bound state at energy E = 
-1/2L2 while qo supports no bound states. 

Choosing ~ ~ = 0 ,  Ho is then the free-particle Hamiltonian and the reflection 
coefficient of vo is Ro( k )  = 0 for the positive energies E = k2.  The reflection coefficient 
of H ,  is given by 

y ,  -ik 
y , + i k  R , ( k )  =- RO(k) 

which is zero for R o ( k )  = 0. But it is the case of the reflectionless potential in (2.14) 
for N = 1 and b = (l/L&). 

From SSQM let us suppose 

v- = U 2  - U, = 1/2L2. 

U = - * o x / + o  (3.9) 

(3.8) 

Equation (3.8) is a very simple Riccati equation whose solution is given by substituting 

and we have 

* o x x l * o =  1/2L2. (3.10) 

Here, (clo is the solution of the zero-energy Schrodinger equation with 

(--$+ u 2 -  U,) *o = 0. 

The form of the solution, Go, of (3.10) is 

X 
+o = constant x cosh - 

V3L (3.11) 

and from (3.9) it follows that 

1 X 
L: = -- tanh -, 

f i L  &L (3.12) 
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The superpartner to V- has the form 

1 1  X 
v+=u2+ux=---- 2 L 2  L2sech2- 

L f i '  
(3 .13)  

Now, if we denote 

2 1 1 X 
v ~ ( x ) = u  fu,--=---sech2- 

2L2 L 2  L A  

we can see that HI is the superpartner to Ho. 
Using results from SSQM we shall now demonstrate how to construct a symmetric 

reflectionless vj(x), j = 1 , 2 , .  . . , N. For arbitrary j we may now assume v j - ] ( x )  to be 
known and define uj by 

vj+l = U? - U. - E .  
J JX J '  

Then, the superpartner has the form 

The crucial point for the construction is that the supersymmetric reflectionless 
partner can be expressed via the eigenfunctions of the corresponding Hamiltonian. 
This can be seen from the equation ( j  = 1 )  

d d2 
dx dx2 

H, = A'A- = H - + [ A + ,  A - ]  = H- + 2  - U = H- - 2  - In +bo. 

Hence 

d2 d2 
dx dx 

H, = -?+ E l  + T ~ -  2 7 In +ho( E,) 

and 

(3 .14)  

(3 .15)  

for v ~ = O .  
We can apply this procedure to the z system ( 3 . 1 ) .  For higher N = 2 , 3 , .  . . it is 

known (Calogero and Degasperis 1982, Sukumar 1986) that the symmetric reflectionless 
q N ( x )  may be expressed in terms of normalised bound-state eigenfunctions in the form 

v N ( x )  = -4 [ ~ i + h k ( ~ i ) I .  ( 3 . 1 6 )  

Using the results of SSQM a vector version of the NLS (VNLS) was presented (Hruby 

N 

i = l  

1988) in the form 

i a , h  + +NXx - T N $ N  = 0 ( 3 . 1 7 a )  

( 3 , 1 7 6 )  
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where ( L N  ( E i )  are bound states given by 

with vN being 'symmetric' reflectionless potentials. 
For the physical application, the interesting case is when 

1 x N ( N + l )  v N ( x )  = - N ( N +  1) 7 sech2 -= - % ( X I .  2 L  La 2 

(3.18) 

(3.19) 

Mathematically, (3.19) corresponds to the so-called Lame-Ains N-zones elliptical 
potential (Novikov 1980). In this case the VNLS system (3.17) has the form 

N ( N +  1) 
( v d x ) +  I*?) xx = o .  

( 3 . 2 0 ~ )  

(3.20 b) 

In these equations there exist the envelope solitary wave solutions 

N ( N + l )  X 
(LN = exp(it/sL*) sech 2 L  

1 

for arbitrary N = 1 , 2 ,  . . . . 
To end this section we mention that these results are valid for all classes of so-called 

'bona fide' potentials (Calogero and Degasperis 1982). An arbitrary couple of these 
potentials are given in the form 

u ' ( x ) = $ ( v 2 - 2 v x )  u2(x) = 4 ( v 2 + 2 v x )  

where Y(X)  is an arbitrary regular function; both v(x)  and its derivatives go to zero 
at infinity. Reflection ( R )  and transmission ( T )  coefficients corresponding to the 
potentials u1*2( x )  are connected via the following relations: 

R 1 ( k )  = - R Z ( k )  T ' ( k )  = T * ( k ) .  (3.21) 

It is interesting that supersymmetry appears as relation (3.19) between R and T 
coefficients of the two superpartner potentials ulV2  (for v = 2u, u132 = V+,-). 

Reflectionless potentials which are discussed here are a special subclass of the 
'bona fide' potentials and it is well known that these potentials are the multisoliton 
solutions of the Kdv equation (Calogero and Degasperis 1982). 

In the application to the z equations the time evolution ofthe reflectionless potentials 
vN is different and is given by 

N 

TNrr - 7.Vxx =4(  i =  c 1 Ya/+.v(Ei)l2) xx . 

The numerical verification of the evolution of the soliton solutions given by ( 3 . 1 7 ~ )  
and (3 .176)  was given in Astrelin (1988). It is known that this admits another 
presentation first made by Makhankov and Myrzakulov (1986) by means of the 
factorisation method. The U( N )  vector non-linear Schrodinger equation factorisation 
and the relation with the SSQM results (Sukumar 1986) was published by Hruby and 
Makhanov (1987). 
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4. The U(N) vector non-linear Schrodinger equation: factorisation and the relation 
with the SSQM results 

The U ( N )  vector NLS has the form 

where 

(4.2) 

A new particular class of the soliton solutions of (4.1) has recently been obtained 
(Makhankov and Myrzakulov 1988) via the so-called factorisation method. We show 
that these solutions are equivalent to the reflectionless symmetric potentials of the 
one-dimensional Schrodinger equation and in the case when the potentials v , ~  (x )  have 
the form (2.14) it corresponds exactly to the results given in 09 2 and 3 via SSQM. We 
can show this in the following way. 

Write the solutions of (4.1) in the form 

where 

and put (4.3) 

Suppose the potential vN to be in the form (2.14); then (4.4) becomes 

4L,,+ N ( N + l ) b 2 s e c h  b y 4 N , J = - A 1 4 N , J .  (4.5) 

It is known that (4.5) for arbitrary N has N eigenvalues AI = - j2b2 ,  j = 1 , 2 , .  . . , N. 
The corresponding eigenfunctions may be found by using the factorisation which is 
equivalent to the SSQM 'square root', mentioned above. 

We can define A; in the same way as in (2.3), namely 

d d A ;  = *-+ lb tanh by = *-+ ur(y) 
dY dY 

where has the form (3.12) for 1 = 1 and b = 1/Lv?. 
Then in the same way as in SSQM we define 

&+I 41.1 = 4/+1,] 

Ay+, 41.1 = 4/-I,J' 
From (4.6) and (4.7), using 

41.1 

(4.6) 

(4.7) 

(4.8) 
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for I >  N, we obtain all the solutions to (4.5). Some of them follow directly; e.g. for 
N = j = l  weget 

AL4N.N = 0 

and from this 

4 N . N  - sechN by. 

Generally, we have the recurrent formula 

4,,j = ATAT-, . . . A;+,#J~,~. 

Thus we obtain for N = 1 = m, i.e. 1 = j  = 1,  from (4.9) 

4IJ - sech by 

which corresponds to the SSQM relation (2.10) with $0 as in (3.11).  
V+ = U;+ u l x  has a zero-energy bound state whose eigenfunction 

(4.9) 

(4.10) 

(4.1 1 )  

In fact, the potential 
is 

X 
$: - sech - 

L a ‘  

For N = 2 we have the two solutions corresponding to A, = -b2 and A2 = -4b2. 

42,2 - sech’ by ( 4 . 1 2 ~ )  

Then, from (4.9) it follows that 

and from (4.10) and (4.11) we get 

= A:C$~,, - tanh by sech by. (4.12 b )  
So, we obtain from the relations (4.3) and (4.11) the known one-soliton solution of 
the U ( l )  NLS equation 

(4.13) dl(x,  t )  = C exp(i6,) sech by 

where /Cl’= 2b2. 
For N = m = 2 it follows that the soliton solution to the U(2) VNLS is 

) sech’ by 
c, exp(i8,) sinh by 

42(x, 1 )  = (4.14) 

where 1 C,12 = IC2I2 = 6b2. Analogous results hold for N = m = 3 and so on. 

can be given following Sukumar (1986) 
The general expression for the symmetric reflectionless potentials vN(x, t )  in (4.4) 

(4.15) 

where the elements of the matrix DN are given by 

r D N 1 J k  = f(Yk)’-’[exp(ykx)+ exp(-YkX)] (4.16) 

and the normalised eigenfunctions for the eigenenergy EJ = -yj’ = AJ may be written 
in the form 

(4.17) 

where j = 1,2,  . . . , N. 



O n  SSQM and  the U (  N )  non-linear Schrodinger equation 1817 

For N = 2 from the relations (4.15)-(4.17) it follows that 

cosh y1 x sinh y2x 
y, sinh y i x  y 2  cosh y2x 

D 2 = (  

y: cosh y1 x + y: sinh y2x 
(y2 cos y2x cosh y1 x - y1 sinh y2x sinh y1 x)’ 772(x) = -2(Y: - Y:) 

’ I 2  cosh y2x 
6 2 ( E l ) = ( y Y : - Y : ) )  det D2 

cosh vy -cosh xy - sinh vy - sinh xy  
x cosh vy + v cosh xy 

= ( x  - v )  

sinh vy + sinh xy -cosh vy -cosh xy 
x cosh vy + v cosh xy 

= ( x  + v )  

(4.18) 

(4.19) 

( 4 . 2 0 ~ )  

(4.20b) 

where x = -( y1 - y2) and v = y1 + y2. 

Myrzakulov (1986). 
Equations (4.19) and (4.20) coincide with (22) and (25), (26) of Makhankov and 

We can also see that 

772(X) = -4(Y,&:(E,)+ YI~:(EI)I (4.21) 

and in particular, if y: = 4y: the resulting potential is 

v2(x)  = -6y: sech’ y1 x (4.22) 

There exist two bound states at A I  = -y: = -b2, A2 = -4y: = -4b2 and (4.20a, b )  

These new soliton solutions of the VNLS are equivalent to the known solutions in 

i.e. q2(x) exactly corresponds to the potential (2.14) for N = 2. 

correspond to (4.14). 

SSQM (Sukumar 1986). 

5. Conclusions 

In this paper, after introduction to SSQM, we have shown the general connection 
between N-soliton solutions of Kdv, SSQM, the inverse scattering method and the 
construction of the reflectionless potentials. 

The new features of the paper seem to be the following observations. 
(i)  The Miura transformation in some sense represents the supersymmetric ‘square 

root’. 
(ii) The symmetry between reflection and transmition coefficients for ‘bona fide’ 

potentials in quantum mechanics is connected with supersymmetry. 
(iii) The application of SSQM to the VNLS equation provides the possibility of 

investigating the soliton sector of certain non-integrable systems such as the z system. 
The symmetric reflectionless potentials are obtained here as linear combinations of 
the eigenvalue solutions. 

It should be noted that symmetric reflectionless SSQM potentials and those obtained 
via the familiar factorisation method naturally coincide up to reparametrisation. 
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The new result (iii) has possible applications to plasma physics and non-linear 
optics. 
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